Extending Particle Number Limits to below 23 nm:

First Results of the H2020 DownToTen Project

M. Bainschab¹, A. Bergmann¹, P. Karjalainen², J. Keskinen², J. Andersson³, A. Mamakos⁴, B. Giechaskiel⁵, C. Haisch⁶, O. Piacenza⁷, L. Ntziachristos⁸, and Z. Samaras⁸

¹ Institute of Electronic Sensor Systems, Graz University of Technology ² Aerosol Physics, Tampere University of Technology ³ Ricardo UK Ltd. ⁴ AVL List GmbH ⁵ Sustainable Transport Unit, Joint Research Centre, European Commission ⁶ Chair of Analytical Chemistry, Technical University Munich ⁷ Centro Ricerche Fiat SCPA ⁸ Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki

Project Objectives

- Quantitatively describe the nature and the characteristics of particles <23 nm
- Develop and set up a synthetic aerosol bench and use it for fundamental studies at instrument level
- Evaluate existing, proposed and under development particle measurement instruments
- Analyze and compare a large number of possible sampling and sample conditioning configurations
- Set-up an appropriate particle number portable emission measurement system (PN-PEMS) demonstrator
- Explain the nature of particles not included eventually in the method
- Develop and propose an appropriate sampling and measurement methodology for sub-23 nm particle emissions for both constant volume sampling (CVS) and real driving emissions (RDE)
- Model the particle transformation (tailpipe-out to the inlet of the measurement equipment)

Issue to Address

Current legislation limit at 23 nm potentially leaves large out fraction of exhaust particles observed in real vehicle operation Figure [1]. shows the sub-23 solid particle fraction for different technologies.

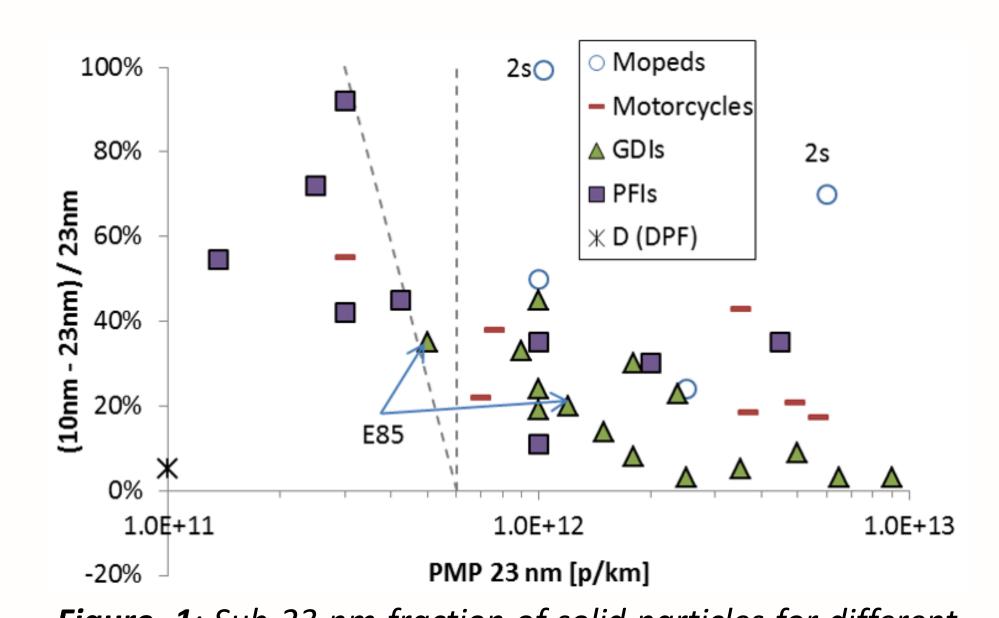


Figure 1: Sub-23 nm fraction of solid particles for different technologies without loss correction (a factor of 1.7-2.0). Estimation based on the difference of 10 nm and 23 nm cut size CPCs. The dashed lines indicate the current 6x10¹¹ p/km limit for particles <23 nm (vertical) and particles <10 nm. Figure taken from [1] (w. permission).

[1] Giechaskiel, B., and Martini, G. (2015). PMP-37-03 JRC exhaust particles work items status Presentation for the PMP group. Available at: https://wiki.unece.org/display/trans/PMP+37th+session

Results

Evaluation of different components to design a sampling system for particles <23 nm with low losses and high volatile removal efficiency.

Particle Losses

- **Thermophoretic** losses (Figure 2) are mainly caused by cooling down the sample with an ejector diluter (ED). Using a porous tube diluter (PTD) reduces thermophoretic losses to almost zero.
- The catalytic stripper (CS) source of **diffusional** dominating losses (Figure 3). They are reduced by downsizing the CS.

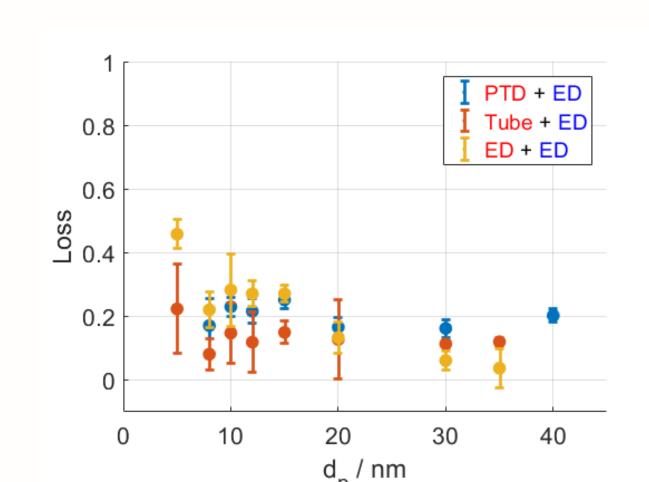


Figure 2: Thermophoretic losses of different dilution systems.

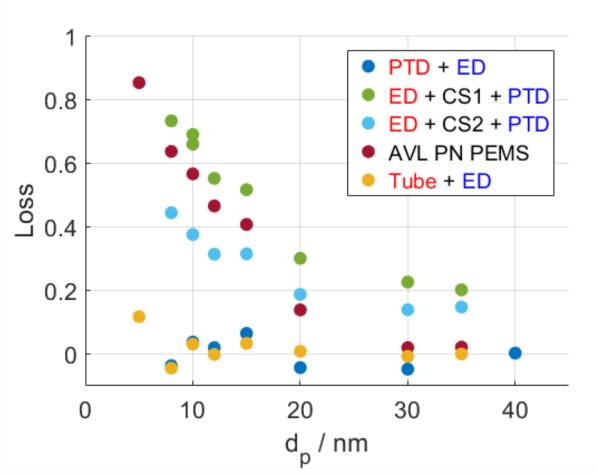
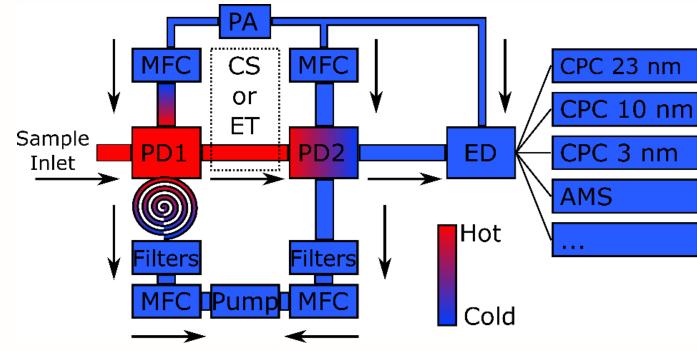
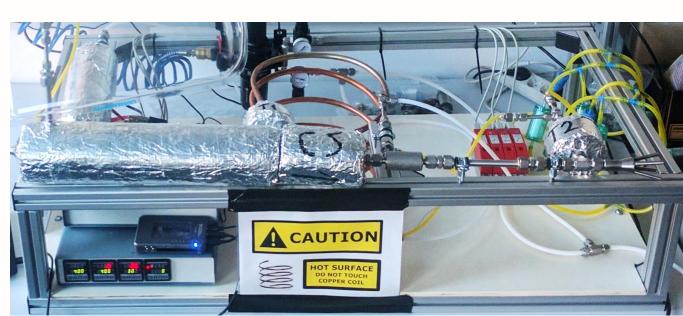


Figure 3: Diffusional losses of different sampling systems.

Artefact Formation

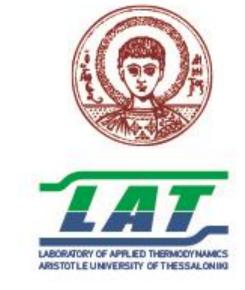
Particle growth (Table experiments that showed artefact formation is low for very systems tested.


Table 1: Solid silver particle growth from re-condensed material downstream of the thermal pre-treatment units for different sampling systems. The growth values are below the resolution of the method used.


	Sampling system	Concentration / 1/cm3	Fraction counted	Growth/ nm
	Primary	NA	8.3E-04	0,0
	ED + ED	990	2.5E-02	1,4
	PTD + ED	2200	5.4E-02	1,7
	PTD + CS1 +ED	65	1.6E-03	0.3
	PTD + CS2 +ED	130	3.3E-03	0.5

Summary and Outlook

Based on experiments at the aerosol DownToTen prototype bench a sampling system (Figure 4) designed that shows very losses, low artefact formation and is suitable for secondary aerosol characterizations.


As a next step tests at the CVS tunnel are performed to evaluate sampling conditions and appropriate protocols.

Schematic (top) and photo (bottom) of the designed sampling system.

PROJECT PARTNERS

In collaboration with:

The University of California at Riverside

National Metrology Institute (Japan)

Action:

National Traffic Safety and Environmental Lab (Japan)